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ABSTRACT

Magnetic reconnection is a fundamental mechanism of driving eruptive phenomena of different scales

and may be coupled with turbulence as suggested by recent remote-sensing and in-situ observations.

However, the specific physics behind the complex three-dimensional (3D) turbulent reconnection re-

mains mysterious. Here, we develop a novel methodology to identify and analyze multitudes of multi-

scale reconnection fragments within a strongly turbulent current sheet (CS) and apply it to a state-

of-the-art numerical simulation of turbulent reconnection for solar flares. It is determined that the

reconnection fragments tend to appear as quasi-2D sheets forming along local magnetic flux surfaces,

and, due to strong turbulence, their reconnection flow velocities and reconnection rates are signifi-

cantly broadened statistically but are scale-independent. Each reconnection fragment is found to be

surrounded by strongly fluctuated in/out-flows and has a widely distributed reconnection rate, mainly

in the range of 0.01–0.1. The results, for the first time, provide quantitative measurements of 3D

magnetic reconnection in strongly turbulent flare CSs, offering insights into the cascading laws of 3D

reconnection in other turbulent plasmas.

1. INTRODUCTION

Magnetic reconnection occurring in current sheets (CSs) is a fundamental plasma process to drive eruptive phenomena

across the universe, during which magnetic energy is rapidly converted to expel fast bulk flows, heat plasmas, and

accelerate charged particles (Masuda et al. 1994; Matsumoto et al. 2015; Shukla & Mannheim 2020; Yang et al. 2024;

Huang et al. 2024; Wang et al. 2022a; Ping et al. 2023). Early two-dimensional (2D) reconnection models, including

the Sweet-Parker and Petschek models (Parker 1957; Sweet 1958; Petschek 1964), assume a stationary and laminar

CS. However, numerous studies over recent decades have highlighted the importance of three-dimensional (3D) effects,

revealing that CSs can become highly fragmented and dynamic due to various instabilities, such as the tearing-mode

instability (TMI) and Kelvin-Helmholtz instability (KHI), especially in astrophysical plasmas with large magnetic

Reynolds numbers (Loureiro et al. 2007; Bhattacharjee et al. 2009; Daughton et al. 2011; Loureiro et al. 2013; Huang

& Bhattacharjee 2016; Kowal et al. 2020; Wang et al. 2023). On the other hand, magnetic reconnection can be

inevitably coupled with turbulence (Lazarian & Vishniac 1999), which not only increases the CS widths but also

enhances the reconnection rate (Kowal et al. 2009, 2017; Yang et al. 2020).

Solar flares, the most energetic eruptive phenomena in the solar system, have recently been observed to exhibit

numerous turbulent features. Fragmented and dynamic reconnection structures have been identified within the flare

CSs that connect coronal mass ejections (CMEs) and flare loops (Warren et al. 2018; Cheng et al. 2018). These

structures are likely the fundamental drivers of turbulent flows at the tops of flare loops (Kontar et al. 2011; McKenzie

2013) and the fine structures observed in flare ribbons (French et al. 2021; Wyper & Pontin 2021; Corchado Albelo et al.

2024; Thoen Faber et al. 2025). The specific physics of multi-scale 3D reconnection regions constituting turbulent flare

CSs, serving as the “Rosetta Stone” of understanding specific energy release mechanisms and interpreting observed

fine structures, unfortunately, remains poorly understood.

With the great advances in high-performance computers, high-resolution simulations have become an indispensable

tool for investigating 3D turbulent reconnection (Ji et al. 2022). However, accurately identifying and analyzing recon-
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nection regions within a turbulent CS from vast simulation data presents a new challenge, hindering a comprehensive

understanding of 3D turbulent reconnection. In weak magnetic turbulence, where the turbulent magnetic field δB

is much smaller than the background field B0, the problem can be simplified using a 2D approximation on planes

perpendicular to the background field (Zhdankin et al. 2013; Li et al. 2021, 2023; Dong et al. 2022). In contrast, in

strongly turbulent plasmas where δB ≥ B0, as sophisticated methods are absent (Vlahos & Isliker 2023; Isliker et al.

2019; Kowal et al. 2020; Lapenta 2021), determining the nature of 3D reconnection regions, including their geometric

shapes, reconnection flows, and reconnection rates, is still in the early stage. To tackle this problem, we propose a novel

methodology to quantitatively analyze 3D turbulent reconnection. We apply it to the simulation data of the strongly

turbulent 3D reconnection during a solar flare, which is self-consistently formed and is comparable with observations in

nature (Wang et al. 2023; Ren et al. 2025). Our systematic analysis uncovers a fundamental yet previously unresolved

pattern of 3D turbulent reconnection in the flare CSs.

Figure 1. Diagram of reconnection regions within the turbulent flare CS. a Distribution of E∥ at t = 8.2. Only grids with
|E∥| ≥ 5× 10−4 are rendered for clarity. b Some typical reconnection kernels. Several reconnection kernels are highlighted and
colored with E∥. The magenta curves denote the Ξmax lines. Two field lines connected to two Ξmax lines are shown and colored
by E∥. c A reconnection kernel in its intrinsic reconnection reference frame. The dots depict the Emax grid points colored by
E∥. The slice perpendicular to êg shows the 2D profile of E∥ near the Emax grids, where the gray curves depict several projected
field lines. The black curves on the slice plots the contour lines of |E∥| = Ethres, indicating the cross sections of inflow edges Eu

i

and Ed
i . The gray and green shades denote the outflow edges Eu

o and Ed
o , respectively.
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2. SIMULATION

The simulation solves the resistive magnetohydrodynamics (MHD) equations incorporating necessary coronal effects

(see Appendix A). The flare CS is 108 m in length and initially conforms to the standard flare model (Shibata et al.

1995; Lin et al. 2015), rooted in a high-density, low-temperature chromospheric layer (Wang et al. 2021, 2022b;

Ye et al. 2020; Shen et al. 2022). Fast reconnection is initiated by a localized anomalous resistivity in the corona

and is subsequently dominated by a low uniform resistivity ηb, corresponding to a background Lundquist number

of S = 2 × 105. A uniform mesh with a grid size of ∆L = 26 km is used in the CS and flare loop top regions to

guarantee the accuracy of physical results. Under the influences of tearing mode instability (TMI), kink instability

(KI), and Kelvin-Helmholtz instability (KHI) in sequence, the CS finally evolves into a self-sustained strongly turbulent

state, indicated by turbulent magnetic energy comparable to background magnetic energy and a spectrum presenting

an inertial region with a power-law index close to −5/3 (Wang et al. 2023). Notably, this simulation reproduces

various key observational features of solar flares (Wang et al. 2023), such as finger-like structures above the flare loop

top (Hanneman & Reeves 2014) and turbulent loop-top regions (McKenzie 2013). Hereafter, we focus on the data

within the CS region y ∈ [0.45, 1] at the final turbulent moment t = 8.2. In simulation, the units of length, time,

velocity, electric field, magnetic field, and current density are L0 = 5 × 107 m, t0 = 114.61 s, u0 = 4.36 × 105 ms−1,

E0 = 8.73× 102 Vm−1, B0 = 0.002T, and J0 = 3.18× 10−5 Am−2, respectively.

3. RECONNECTION KERNELS

According to the general magnetic reconnection theory, the condition for 3D reconnection is given by Ξ ≡
∫
E∥ds ̸= 0

(Schindler et al. 1988; Hesse & Schindler 1988; Hesse et al. 2005; Pontin & Priest 2022), where Ξ is the quasi-potential,

E∥ = ηbJ ·B/|B| denotes the parallel electric field, J is the current density, B is the magnetic field, and the integration

is carried out along a magnetic field line. In a strongly turbulent state, reconnection regions in the CS characterized by

intense E∥ exhibit a highly chaotic pattern (see Figs.1a and A2). Although 3D reconnection generally occurs within a

finite volume (Priest et al. 2003), among all the field lines threading this volume, there exists a special one associated

with an extremal quasi-potential Ξmax, which corresponds to the reconnection rate (Hesse et al. 2005; Wyper & Hesse

2015). For discrete numerical data, the spatial distribution of Ξmax field lines can be approximately inferred from

Emax grid points (see Appendix B), identified by the criteria ∇⊥E∥ ∼ 0 and |E∥| > Ethres. Here, ∇⊥ denotes the

gradient operator perpendicular to the local magnetic field, and Ethres = 5× 10−4 serves as a threshold distinguishing

regions undergoing reconnection or not. It should be noted that the statistical results presented later are robust to

reasonable variations in Ethres, as detailed in Appendix E.

The Emax grids represent the smallest numerically resolvable units of reconnection. To investigate the integral

properties of reconnecting regions, we employ the region growing algorithm to cluster spatially connected Emax grids,

thereby constituting the kernels of reconnection regions (Fig. 1b). Here, “spatially connected” means that, for any

given grid, its nearest neighbor resides within the same mesh cell. This approach allows the original complex turbulent

reconnection structure shown in Fig. 1a to be decomposed into smaller, more analyzable components. The reconnection

kernels exhibit diverse shapes, scales, and E∥ values (Fig. 1b). Some extend considerable distances in specific directions,

resembling the extended X-lines observed in kinetic simulations (Li et al. 2023). It is worth noting that the lower

threshold, Ethres, ensures all grids within a reconnection kernel have identical signs of E∥. Among the field lines

intersecting the Emax grids, there is one line that can be identified with the maximum value of |Ξ|, allowing precise

determination of the Ξmax line for the reconnection region (see the magenta curves in Fig. 1b). Unlike laminar

reconnection, the Ξmax line of a reconnection region may pass multiple reconnection regions (Fig. 1b).

For a given reconnection kernel, there exists an intrinsic reconnection frame (Fig. 1c), consisting of the guide field

direction (êg), the inflow direction (êi), and the outflow direction (êo). êg approximately aligns with the average

magnetic field of Emax grids. êi is determined by the local magnetic field structures at all Emax grids and is approx-

imately normal to the surface of the reconnection kernel (see Appendix C). êo is set to be perpendicular to both êg
and êi. Using this frame, the inflow edges (Eu

i , Ed
i ) and outflow edges (Eu

o , Ed
o ) surrounding a reconnection kernel

can be identified (see Fig. 1c). Here, the superscripts “u” and “d” denote the upper and down sides relative to êi or

êo, respectively. The inflow edges correspond to the nearest isosurfaces with |E∥| = Ethres enclosing the reconnection

kernel. The outflow edges outline the boundaries of the reconnection region at both ends of the outflow direction, with

their widths along the inflow direction determined by the average thickness between inflow edges. These edges enable

us to quantitatively investigate reconnection flows and dimensionless reconnection rates of all fragmented reconnection

regions. Technical details regarding the determination of the frame and edges are elaborated in Appendix C.
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Figure 2. Statistics of morphological properties of reconnection kernels. (a) PDF of the grid numbers of reconnection kernels.
The dashed line represents the linear fit, with its slope k labeled. The colored shades V1, V2, and V3 indicate the domains of
Ng ∈ [1, 5), [5, 50), and [50,∞), respectively. (b) Joint PDF of R2

S and R3
S for reconnection kernels with finite L1. The dashed

line denotes the R3
S = R2

S line. (c) PDFs of θB for all reconnection kernels with finite L2 (the black curve). The colored shades
correspond to the PDFs of θB for reconnection kernels of V1–V3 as indicated in panel (a). All PDFs are normalized by their
maximum values for clarity of comparison.

4. MORPHOLOGICAL PROPERTIES

The volumes of reconnection kernels can be represented by their Emax grid numbers, Ng, which follow a power-law

probability distribution function (PDF) decreasing towards larger Ng (Fig. 2a). To quantitatively evaluate the shape

of a reconnection kernel, we perform principal component analysis (PCA) on its grid coordinates, which outputs the

coordinate variances on three principal directions denoted by L1, L2, and L3 in descending order. For reconnection

kernels with finite L1, their shapes can be evaluated by Rα
S =

√
Lα/L1, α = 2, 3. Figure 2b shows that almost all

reconnection kernels satisfy R3
S < R2

S , with a large portion having R3
S close to 0, implying that they tend to have 2D

patch-like spatial distributions. For a reconnection kernel with L2 ̸= 0, the characteristic vector êc corresponding to

the smallest variance L3 is approximately perpendicular to the surface of the reconnection kernel. The mean angle

between êc and the magnetic field at Emax grids Bgl, evaluated by θB = ⟨arccos(b̂gl · êc)⟩, concentrates around 90◦

(Fig. 2c), indicating that reconnection kernels tend to form along the local magnetic flux surfaces. Here b̂gl is the unit

vector of Bgl and ⟨·⟩ in this paper denotes averaging over all Emax grids of a reconnection kernel.
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Figure 3. Statistics of reconnection properties. (a) PDFs of uu
i , u

d
i , u

u
o , and ud

o. FWHMi represents the averaged FWHM
of the uu

i and ud
i distributions, while FWHMo is the FWHM for outflow velocities. The mean values of the four PDFs are

denoted by the zoom-in window. (b) Joint PDF of ⟨uout⟩ and ⟨uin⟩ for all reconnection kernels. The sampling percentages
in each quadrant are labeled. Three color curves denote the contours of PDF = 0.2 for reconnection kernels in V1, V2, and
V3, respectively. (c) PDF of the reconnection rate Rp. The black curve shows the result for all reconnection kernels, while
the colored shades correspond to the different V1–V3 categories as indicated in Fig. 2a. (d) Temporal evolution of the total
reconnection rates evaluated by Rt and RB̄.

5. RECONNECTION PROPERTIES

The reconnection inflows and outflows associated with a reconnection kernel can be determined at its inflow and

outflow edges (Fig. 1c). Specifically, the inflow velocity on the upper inflow edge Eu
i is calculated as uu

i = êi · [u(Eu
i )−

⟨u⟩], and ud
i , u

u
o , and ud

o at the other three edges can be obtained similarly. Generally speaking, the average velocities of

reconnection kernels (⟨u⟩) have finite values, representing their global motions. We collect the four velocities sampled

at the edge grids for all reconnection kernels to obtain their PDFs, which exhibit the flow velocity distributions at

the inflow and outflow edges (Fig. 3a). It is found that all four PDFs exhibit significant broadening and approximate

symmetry with respect to their peaks (Fig. 3a). Their full widths at half maximums (FWHMs) are much larger than

their mean values, indicating a strong turbulent regime. The broadening of PDFs reflects the inherent uncertainties

in determining reconnection flows of the fragmented reconnection regions, presenting a distinct nature compared with

traditional laminar reconnection with deterministic reconnection flows.

On average, the PDF of the upper inflow velocities drifts towards negative values, while the down inflow velocities

tend towards positive ones, reflecting an inward flow along êi; conversely, the drift directions of the velocities at the
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upper and down outflow edges are opposite to those of inflows, indicating an outward flow along êo (Fig. 3a). The mean

inflow and outflow velocities for each reconnection kernel are given by ⟨uin⟩ = ⟨uu,j
i ⟩−⟨ud,j

i ⟩ and ⟨uout⟩ = ⟨uu,j
o ⟩−⟨ud,j

o ⟩,
respectively. Their joint PDF shows that reconnection kernels are most probably located in the fourth quadrant with

⟨uin⟩ < 0 and ⟨uout⟩ > 0 (Fig. 3b). ⟨uin⟩ < 0 means that the plasmas at inflow edges move towards the reconnection

kernel, while ⟨uout⟩ > 0 indicates that the plasmas are expelled out across the outflow edges. This average effect is

consistent with the flow patterns surrounding the reconnection region in Sweet-Parker and Petschek models (Priest

& Forbes 2000). However, it is still possible for a reconnection kernel to enter the other three quadrants with a

counter-intuitive flow pattern (Fig. 3b), which could be a new feature for 3D turbulent reconnection.

The reconnection rate of each reconnection kernel is given by Ξmax (Hesse et al. 2005). Its dimensionless value can

be obtained by Rp = |Ξmax|/(BinVAinLin). Here, Bin and VAin are the inflow parameters calculated by the average

magnetic field and Alfvénic velocity at the two inflow edges Eu
i and Ed

i , and Lin, reflecting the length of CS analogous

to the 2D model, is set as the standard deviation of the reconnection kernel along êo. Similar to the velocities, the

PDF of Rp also exhibits a strong broadening with the main body in the range of 0.01–0.1 (see the black curve in

Fig. 3c).

At a given moment t, the total reconnection rate contributed by all fragmented reconnected regions is given by

Rt =
∑

|Ξmax|/(B0u0L0) (Fig. 3d), where the summation is taken over all reconnection kernels. Traditionally, for a

CS with approximate translation symmetry along the guide field direction, the reconnection rate RB̄ can be evaluated

from the 2D magnetic field averaged along the guide field direction, B̄ = ⟨B⟩z (Wang et al. 2023; Huang & Bhattacharjee

2016). The mean-field approach relies on identifying the principal X-point of B̄, which typically exhibits spatial jumps

under turbulent conditions, leading to significant temporal fluctuations (see the gray curve in Fig. 3d). However, by

including the contributions from all reconnection fragments, the evolution ofRt shows considerably smaller fluctuations

and follows a global trend similar to RB̄ (see the dark curve in Fig. 3d). The curve of Rt exhibits two rising stages

corresponding to the development of TMI during 6 < t < 6.5 and the growth of turbulence after t = 7, respectively.

Furthermore, Rt is found to be systematically larger than RB̄, which shows that RB̄, as adopted previously, tends to

underestimate the total reconnection rate.

Figure 4. Fractal analysis of 3D regions covering all reconnection kernels. The blue circles depict the result samples from
box-counting analysis. The orange dashed line indicates the maximum z-direction width of the CS region at t = 8.2 (Fig. 1a
and also see Ren et al. (2025)). The black dashed line represents the power-law index obtained by linear fit of samples with box
sizes smaller than the CS width.

6. SCALE-INDEPENDENCY

To investigate the influences of reconnection kernel scales on statistical results, we categorize the reconnection

kernels into three groups: V1 (Ng < 5), V2 (5 ≤ Ng < 50), and V3 (Ng ≥ 50) (Fig. 2a). The PDF of θB remains nearly
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unchanged across different reconnection kernel sizes (Fig. 2c). For the joint PDFs of ⟨uin⟩ and ⟨uout⟩, the proportions in
the fourth quadrant (⟨uin⟩ < 0 and ⟨uout⟩ > 0) are similar across all categories, with values of 50.4%, 52.2%, and 52.5%

for V1, V2, and V3, respectively (Fig. 3b). The PDFs of Rp for the three categories exhibit similar trends (Fig. 3c).

For V2 and V3, the PDFs almost overlap; for V1, the peak shifts towards smaller values, but 41.7% of the samples

still fall within the range of [0.01, 0.1]. It should be noted that the reconnection kernels in V1 contain fewer than 5

grids, approaching the resolution limit of the simulation, and are likely influenced by numerical errors. Nevertheless,

the statistical trends observed in V1 remain highly similar to those of the larger reconnection kernels. Therefore, the

morphologies, flows, and rates of reconnection kernels can be considered approximately scale-independent.

We also perform a standard 3D box-counting analysis to determine the fractal behavior of the regions covering all

reconnection kernels (see Appendix F for technical details). The relationship between the number of covering boxes

(Nb) and their size (Lb) exhibits a power-law distribution, yielding a fractal dimension of DF = 2.19. This result

suggests that the reconnection kernels exhibit a fractal structure in 3D space with a relatively low filling factor, further

supporting the scale-independent quasi-2D patten of reconnection kernels (Fig. 4).

7. SUMMARY AND DISCUSSION

A novel approach is developed to quantitatively analyze 3D reconnection within strongly turbulent flare CS. We

recognize multitudes of fragmented reconnection kernels and disclose their basic properties including the morphologies,

reconnection in/out-flows, and reconnection rates, as well as the corresponding statistical distributions.

It is proved that the reconnection kernels tend to have a patch-like structure aligned with local magnetic flux

surface. For the first time, it is shown that, due to strong turbulence, the fragmented reconnection regions produce

fluctuated in/out-flows and reconnection rates, represented by the significant broadenings in their PDFs. Despite a

strong fluctuation, on average, they most probably induce flows compressing plasmas towards the reconnection kernels

and expel exhausts in the outflow direction. The reconnection rates mainly take values of 0.01–0.1, coinciding with the

values derived by previous studies for different reconnection configurations (Cassak et al. 2017). More importantly, the

statistical laws are found to be approximately independent of the reconnection kernel scales, indicating the existence of

a fundamental reconnection pattern. At last, we propose a new strategy to evaluate the reconnection rate of the highly

fragmented 3D turbulent reconnection. Compared with the mean-field method which only works for 3D systems with

approximate translation symmetry on the guide field direction (Huang & Bhattacharjee 2016), the new method can

be applied to arbitrary 3D systems and estimate the reconnection rate Rt more accurately, thus assessing its intrinsic

evolution.

A scenario of 3D reconnection within strongly turbulent flare CSs is suggested and illustrated by Fig. 5. The

reconnection kernel with an irregular shape tends to have a 2D patch-like configuration. Owning to the turbulence,

the reconnection inflows and outflows are violently perturbed (see the velocity arrows in Fig. 5). The Ξmax line, a

special field line threading the reconnection kernel, satisfies the line conservation (Hesse et al. 2005; Wyper & Hesse

2015) and approximately moves along with the reconnection kernel (see the magenta curve in Fig. 5). If a field line

passes through the diffusion region enclosing the reconnection kernel, its start point flows with the plasma (see the

red dot in Fig. 5) and moves a small distance after a short time δt but its endpoint might flip a large distance (see the

blue curves in Fig. 5 or Fig. 7 of Priest et al. (2003)). This flipping is similar to the slipping of flare loops as frequently

observed along flare ribbons (Aulanier et al. 2006, 2007). Thousands of reconnection fragments with various flow

patterns and reconnection rates constitute the complex reconnection process in a turbulent CS, but their statistical

distributions are independent of scales. The reconnection kernels collectively exhibit a fractal structure in 3D space

with a fractal dimension greater than 2. This effectively generalizes the concept of fractal reconnection by Shibata &

Tanuma (2001) to 3D turbulent reconnection and provides a quantitative validation.

The quasi-separatrix layers (QSLs) are commonly used to identify where the reconnection may occur (Pontin &

Priest 2022; Pontin et al. 2024), but are not able to pinpoint the reconnection (Reid et al. 2020). In contrast, the

methodology developed here not only precisely locates the reconnection sites but also quantitatively determines their

physical properties. Furthermore, while our analysis targets the collisional reconnection regime, the method that is

developed from general reconnection theory and only requires magnetic field, non-ideal electric field, and velocities as

inputs can be applied to kinetic simulations of collisionless reconnection. The resulting statistics of local reconnection

properties can aid in initializing physical parameters for small-scale kinetic or hybrid simulations and provide strategies

for particle injection in MHD-particle models (Zhang et al. 2024; Drake et al. 2019; Arnold et al. 2021; Sun & Bai

2023).
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𝐮𝐮𝑜𝑜 𝐁𝐁𝑑𝑑 
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Figure 5. Schematic of the 3D reconnection pattern of an arbitrary reconnection fragment within strongly turbulent CS. The
blue surface denotes the reconnection kernel, sandwiched between two gray surfaces indicating the inflow edges. The reconnection
kernel has a global velocity as marked by ⟨u⟩. The yellow and green arrows denote the inflow and outflow velocities, respectively,
and their lengths indicate the speed strengths. The dark and light dashed curves plot the background field lines migrated toward
the reconnection kernel by inflows. The magenta arrow curve denotes the Ξmax line. The blue solid curve plots a field line
passing through the dissipation region, which is traced from a small plasma element denoted by a red dot. After a short time
δt, the red dot flows a small distance, while its field line, illustrated by a blue dashed curve, flips significantly on the other end
as affected by the reconnection within the reconnection region.

The CS for eruptive flares in our simulation has a special configuration, with magnetic field lines rooted in the solar

photosphere and extending outward. The guide field within the CS is aligned along the polarity inversion line (Janvier

et al. 2014; Xing et al. 2024) and varies spatially and temporally in magnitude (Aulanier et al. 2012; Dahlin et al. 2022).

This distinctive configuration plays a key role in determining the development of the turbulent CS and in forming fine

flare features observed. Furthermore, despite the turbulent nature of the reconnecting CS varying with time in our

simulation, the statistical properties derived above exhibit a limited variation (Fig.D6), suggesting the existence of a

unified pattern for 3D turbulent reconnection in flare CSs. Nevertheless, more investigations are still encouraged to

justify such a fundamental pattern for other reconnection regimes; the methodology developed here offers a valuable

analysis tool.

APPENDIX

A. NUMERICAL MODEL

We utilize the simulation data from Wang et al. (2023), with its main configurations summarized here for complete-

ness. The Athena++ code is employed to solve the resistive MHD equations (Stone et al. 2020), incorporating the

effects of anisotropic thermal conduction, radiative cooling, background heating, and solar gravity. Thermal conduc-

tion is assumed to be aligned with the magnetic field, with the conductivity coefficient determined by the classical

Spitzer model (Yokoyama & Shibata 2001). Radiative cooling is considered optically thin and is computed using a

widely adopted model in solar simulations (Klimchuk et al. 2008; Ye et al. 2020; Wang et al. 2022b). Background

heating is configured to balance the cooling effects at the initial moment (Ye et al. 2020; Ni et al. 2015).

The initial atmosphere is in hydrostatic equilibrium, maintained by the balance between thermal pressure and

gravity. It consists of a 1MK corona and a low-temperature, high-density chromospheric layer at the base. While

thermal conduction can influence the thermal balance at the transition layer between the chromosphere and the corona,

where a steep temperature gradient exists, its effect is negligible compared to the dominant fast reconnection process.
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Figure A1. a Schematic representation of the 3-level static mesh refinement utilized in the simulation. The initial spatial
distribution of the anomalous resistivity ηa is provided. Grid levels 0, 1, and 2 are represented by black, purple, and blue colors,
respectively, with the highest resolution grid points at level 2 achieving a spatial resolution of 26, km. b Temporal evolution
of the maximum value of ηa. c Current density distribution at t = 5. The profiles of magnetic field strength (B) and thermal
pressure (P ) along a horizontal slit are also shown, highlighting the presence of slow shocks at the boundaries of the current
sheet.

Consequently, the background atmosphere remains nearly static throughout the simulation timescale. To prevent

numerical instabilities at the lower boundary, the radiative cooling and background heating terms are tapered to zero

below the coronal region.

The initial CS is localized in the region y ∈ [−0.1, 0.1], formed by a force-free magnetic field with a guide field in

the z-direction and opposite y components across the x = 0 plane. The background resistivity, ηb, is set to a low

value of 5× 10−6 to achieve a high Lundquist number condition. To initiate fast reconnection, a localized anomalous

resistivity, ηa, is introduced at y = 0.5 (see Fig.A1a). If ηa were constant over time, the resulting evolution would

lead to a standard Petschek-type reconnection, suppressing the formation of plasmoids in the CS region (Shibata et al.

2023). In our simulation, however, ηa is allowed to decay temporally, nearly vanishing by t = 5, thus leaving the

subsequent evolution dominated by the background resistivity (Fig.A1b). This setup produces a long-stretched CS
at t = 5, closely resembling the structure self-consistently formed by solar eruptions (Fig.A1c and also see Dahlin

et al. (2022)). At this moment, the CS exhibits a thickness that is nearly uniform along the y-direction and presents

typical slow shocks at its boundaries (see Fig.A1c). Subsequently, the CS continues to elongate as the upper principal

plasmoid propagates upward, maintaining this configuration until the onset of TMI around t = 6. The evolution prior

to t = 5 provides the initial condition for the later fast reconnection and is therefore excluded from our analysis.

At z = 0, a symmetric boundary condition is imposed (Yokoyama & Shibata 2001), while all other boundaries

are set as open boundaries using equal-value extrapolation. To prevent numerical inflow at the upper boundary, the

y-direction velocity is set to zero if it becomes negative. To minimize the influence of the upper free boundary, only

data below y = 1 are used in the analysis. Since the main reconnection process and associated turbulence occur within

the CS region, a uniform mesh with a grid size of 26 km is applied in this region to ensure accuracy. Outside the CS

region, the grid size is expanded by two levels using the static mesh refinement technique to reduce computational costs

(see Fig.A1a). The simulation domain is defined as −0.5 ≤ x ≤ 0.5, 0 ≤ y ≤ 2, and −0.15 ≤ z ≤ 0.15, corresponding

to an effective mesh resolution of 1920 × 3840 × 576. The accuracy of main results has been verified by convergence

tests (Wang et al. 2023).

For the conservation part of MHD equations, the HLLD Riemann solver is employed to minimize numerical resistivity

(Miyoshi & Kusano 2005). A second-order piecewise linear method is utilized for spatial reconstruction, while the time
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Figure A2. Diagram of chaotic magnetic field lines within the turbulent flare CS at t = 8.2. The initial positions for field-line
tracing are randomly sampled in regions with |E∥| > 7.5× 10−4.

evolution is computed using the second-order van Leer predictor-corrector scheme. Source terms are handled via the

explicit operator-splitting method. The anisotropic thermal conduction is solved using a slope-limited asymmetric

approach (Sharma & Hammett 2007), with the second-order RKL2 super-time-stepping algorithm applied to reduce

computational costs (Meyer et al. 2014).

The simulation ends at t = 8.2, corresponding to a physical time of 15.66min. At this moment, the CS enters a

strongly turbulent state, and the magnetic field lines exhibit a highly chaotic pattern (see Fig.A2).

B. PHYSICAL MEANING OF EMAX GRIDS

The Ξmax line threading a reconnection region satisfies ∂Ξ/∂α = ∂Ξ/∂β = 0 (Hesse et al. 2005; Wyper & Hesse

2015), where α and β are the Euler potentials. Given that B = ∇α ×∇β, the operators ∂/∂α and ∂/∂β, which act

across different field lines, are equivalent to ∇⊥ under the local approximation of a very short field line. For regions

with finite E∥, a sufficient condition for a field line to exhibit an extremal Ξ is that all locations along the field line

where E∥ ̸= 0 satisfy ∇⊥E∥ = 0, which can be verified as follows:

0 =

∫
∇⊥E∥ds = ∇⊥

∫
E∥ds = ∇⊥Ξ . (B1)
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Hence, although it is not a necessary condition, the distribution of Emax can serve as an approximation for Ξ lines.

For discrete numerical data, the Emax grids can be identified using the procedure outlined by Wang et al. (2024). By

selecting these Emax grids, the complexity of the original system is significantly reduced, and computational efficiency

is enhanced without compromising the principal information about reconnection.

C. LOCAL RECONNECTION FRAME AND IN/OUT-FLOW EDGES

Unlike 2D reconnection, a globally constant guide field direction might be unavailable in 3D reconnection, especially

in systems with strong turbulence (Wang et al. 2024). However, the magnetic field of an Emax grid intrinsically defines

its local guide field Bgl. Additionally, the local magnetic structures near this Emax grid can be examined by B⊥, the

2D component lying on the projection plane perpendicular to Bgl (Fig. C3). Theoretically, B⊥ can be categorized

into nine types (see Tab. 1 in Wang et al. (2024)). Within the CS region, the 3D X- and O-type grids are found to

dominate, accounting for 41.0% and 51.3% in total, respectively. The rest are 3D repelling/attracting grids.

Figure C3. Local magnetic structures of typical X- (a) and O-type (b) Emax grids. The background color represents the
strength of B⊥, with field lines denoted by gray arrow curves. The thick black curves outline the separatrix lines and the
elliptical field line of B′

⊥ for PX and PO, respectively. Definitions of θeig are denoted by magenta markers. The yellow lines
depict the directions of êil.

The anisotropic properties of B⊥ are represented by its source-free part B′
⊥ = B⊥− (∇p ·B⊥)R/2, where ∇p and R

denote the 2D gradient operator and coordinate vector on the projection plane, respectively (Wang et al. 2024). For

both X- and O-type B′
⊥, there exists an eigen-angle θeig (see Fig. C3 and Eq. 23 in Wang et al. (2024)), which reflects

the local exhaust opening angle analogous to 2D reconnection (Cassak et al. 2017; Liu et al. 2022). The bisectors of

θeig lie along the directions of maximum curvature of B′
⊥. The line perpendicular to the open direction of θeig, denoted

by êil, corresponds to the direction of strong shear of B′
⊥, which defines the local intrinsic inflow direction (Fig. C3).

For a reconnection kernel, the intrinsic reconnection frame can be determined by its average directions of êil and Bgl

as follows. First, the origin point is set as the mean position of Emax grids. Second, the inflow direction is evaluated

by êi = ⟨êil⟩/|⟨êil⟩|. Before averaging, we let êil point to a positive direction defined by êc, namely, êil · êc ≥ 0.

For reconnection kernels lacking a valid êc, the positive direction can be set arbitrarily. According to Fig. C4, the

angle θic spanned by êi and êc is most probably smaller than 30◦, indicating that the inflow direction approximately

aligns with the direction across the surfaces of reconnection kernels. Moreover, the PDF of θic is also independent of

reconnection kernel scales. Third, the outflow direction should be perpendicular to the directions of inflow and guide

field and thus is evaluated by êo = ⟨B̂gl⟩ × êi/|⟨B̂gl⟩ × êi|. Fourth, to complete the orthogonal reference frame, the

guide field direction is modified as êg = êi × êo.

To find the inflow edges of a reconnection kernel, at the jth Emax grid rj0, we set up a slit parallel to êi and

locate the nearest positions on both sides satisfying |E∥| < Ethres, denoted as ru,ji and rd,ji . The sets of ru,ji and rd,ji

outline the upper and down inflow edges Eu
i and Ed

i , respectively. The thickness between Eu
i and Ed

i at rj0 is given by
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Figure C4. PDFs of θic for all reconnection kernels with finite L2. The colored shades correspond to the PDFs of V1–V3 as
indicated in Fig. 2a.

W j
p = (ru,ji − rd,ji ) · êi. To locate the outflow edges, Eu

o and Ed
o , we first outline the boundary lines of a reconnection

kernel at both ends along the êo direction on the êo-êg plane. Then, the boundary lines are symmetrically extended

along ±êi to form the two outflow edges. The extension lengths along êi are determined by the mean thickness between

the inflow edges, given by Wp = ⟨W j
p ⟩.

Using this reference frame, the reconnection properties of individual reconnection kernels can be effectively analyzed.

In Fig. C5, we present the profiles of E∥ and the magnetic field lines for six reconnection kernels on the êi-êo planes,

analogous to the slice shown in Fig. 1c. Panels a–c correspond to three relatively large reconnection kernels, while

panels d–f depict smaller ones. Despite variations in the surrounding magnetic structures and spatial scales, all

reconnection kernels are properly aligned within their respective local reference frames, facilitating a systematic and

simplified analysis of their geometric characteristics and reconnection properties.

D. STATISTICAL PROPERTIES AT DIFFERENT MOMENTS

In the main text, we focus on the final moment at t = 8.2 to analyze the statistical properties of a well-developed,

strongly turbulent state. Figure D6 presents the statistical results at three earlier moments. At these earlier stages,

the magnitude of perturbation magnetic fields is lower, and the guide field strength in the z-direction is relatively

stronger. Nevertheless, despite the varying nature of reconnecting CS toward the fully turbulent state, the statistical

properties of reconnection kernels remain remarkably consistent with that at t = 8.2.

E. INFLUENCES OF ETHRES

Here we examine the impact of different threshold Ethres on the statistical results. Setting Ethres to zero results in

prohibitively high computational costs and excessively large sizes of reconnection kernels, complicating the analysis,

particularly for field-line tracing. Conversely, if Ethres is too large, on the one hand, reconnection kernels become exces-

sively fragmented, leading to a reduction in sample size that may not adequately reflect the statistical properties. On

the other hand, many regions with finite E∥ will be missed, which causes the underestimation of the total reconnection

rate. Therefore, our approach for selecting Ethres adheres to two key principles. First, we aim to keep computational

costs at an acceptable level. Second, we ensure that the statistical results remain robust against reasonable variations

in Ethres. To validate the robustness of our findings, we have tested two additional threshold values Ethres = 2.5×10−4

and 7.5× 10−4.

As illustrated in Fig. E7, the statistical properties of shapes (the first two columns), reconnection flows (the third

column), and reconnection rates (the final column) exhibit only minor variations with changes in Ethres. Meanwhile,
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Figure C5. Adjacent E∥ and magnetic structures of six reconnection kernels in their local reconnection reference frames. All
slices pass the origin points of local reconnection frames, and ri and ro are coordinates along êi and êo, respectively. The thick
black curves outline the inflow edges with |E∥| = Ethres, and the thin gray curves depict the project magnetic field lines.

for all cases of Ethres, the statistical results are approximately independent of the sizes of reconnection kernels. That

is to say, the results presented in the main text are robust to variations in Ethres.

There are two primary effects of Ethres. First, a smaller Ethres results in a larger average width sandwiched by inflow

edges (see Fig. E8a). Second, a smaller Ethres allows for the inclusion of more regions with weak reconnection, and

also increases the volume of individual reconnection kernels, thereby extending the integration paths of Ξmax lines.

As a result, Rt increases with decreasing Ethres despite not significantly (see Fig. E8b). It should be noted that, for

the smallest Ethres case, Rt exhibits a prolonged rising phase after t = 7.5, eventually reaching a plateau at t = 8.

In contrast, for the other two cases, Rt starts to decline after approximately t = 7.8. This behavior primarily arises

from two factors. On the one hand, the turbulence further produces numerous smaller-scale reconnection fragments

with weaker reconnection rates (as shown by the blue shade in Fig. E7d1–d3). Including these smaller fragments

increases the total reconnection rate. On the other hand, as these smaller-scale fragments approach the resolution

limit of the simulation, numerical errors in the analysis become increasingly significant, which might cause a larger

uncertainty of the reconnection rate. To obtain a more accurate reconnection rate during the later stages, higher-

resolution simulations are required. However, the overall trends in the PDF of Wp and the evolution of Rt are not

significantly unaffected.

F. FRACTAL ANALYSIS OF RECONNECTION KERNELS

The procedure of fractal analysis is similar with Isliker et al. (2019). To perform the box-counting analysis, we first

assigning a value of one to Emax grids and zero to all other grids within the CS region defined by x ∈ [−0.05, 0.05],

y ∈ [0.45, 1], and z ∈ [−0.15, 0.15]. The resulting dataset is then analyzed using the open-source box-counting script

developed by Moisy (2008), which outputs the relationship between box size Lb and the number of covering boxes Nb,

as shown in Fig. 4. During the analysis of fractal dimension, we exclude the data of box sizes larger than the CS width

to avoid the influences of their numerical errors.
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Figure D6. Statistical properties of reconnection kernels at different moments. The first, second, and third rows show results
at t = 7.2, 7.5, and 7.8, respectively. The first column shows the joint PDFs of R2

S and R3
S for reconnection kernels with finite

L1. The second column presents the PDFs of θB (right peaks) and θic (left peaks) for reconnection kernels with finite L2. The
third column displays the joint PDFs of ⟨uout⟩ and ⟨uin⟩. The fourth column illustrates the PDFs of Rp. The colored curves
and shades have the same meaning as in Figs. 2 and 3.

In Fig. F9, we compute the local scaling exponent defined by Sloc = −dlnNb/dlnLb, and study the influences of

time and Ethres on the results of fractal analysis. At t = 8.2, the Sloc curve exhibits an approximately constant
plateau extending over nearly one order of magnitude around Lb = 10−2, confirming the emergence of fractal scaling

behavior following the onset of turbulence (see the black curve with circle markers in Fig. F9a). At earlier times, Sloc

displays greater fluctuations compared to the later stage; however, it still suggests the presence of approximate fractal

characteristics. Prior to the development of turbulence, the reconnection region remains relatively unfragmented,

leading to larger filling factors than those observed at t = 8.2 (Fig. F9a). Moreover, varying the threshold value Ethres

has a negligible impact on the global trend of Sloc and primarily affects its absolute value. Specifically, a smaller Ethres

incorporates more Emax grids in the 3D CS region, thereby increasing both the filling factor and Sloc (Fig. F9).
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